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Bearing Pressures and Cracks

Bearing Pressures Through a Slightly Waved Surface or Through a Nearly Flat Part of a
Cylinder, and Related Problems of Cracks L

By H. M. WESTERGAARD,* CAMBRIDGE, MASS.

The task is undertaken of determining the bearing
pressures, and the stresses and deformations created by
tnem, in some cases that differ from those considered
by Hertz?in his classical study of contact. Thus two solids
are examined which, before loading, are in contact along
a row of evenly spaced lines in a horizontal plane, as indi-
cated in Fig. 1(a). Between these lines the surfaces have
a separation defined by a nearly flat cosine wave. A uni-
form pressure on top of the upper solid creates contact
over an area consisting of a row of strips, reduces the sepa-
ration of the solids between the strips, as suggested in
Fig. 1(d), and creates contact pressures distributed as
indicated in Fig. 1(c), with vertical rises in the diagram
of pressure at the edges of the strips. At a greater load
the width of the strip becomes equal to the wave length,

NoTaTION
z,y = rectangu'zr coordinates, y vertical
r, 8 = correspos.ding polar coordinates
z = z + iy = rc' = complex variable
zZ = function of z, Equation [1], defining the
stresses oy Equations [4] to [6)
z.Z, 2 = derivative and first and second integral of Z,

‘Equaticzs [2]
= normal siresses and shearing stress in the di-
rections of z and y

T23 94y Toy

o = displacerrents in the directions of z and y

no = displacement naty = 0

s = initial sef aration of two surfaces

E G, u = Young's modulus, modulus of elasticity in
shear, acd Poisson's ratio

F = Airy’s stress function .

P = force on s.ice parallel to the z,y-plane one unit
thick, measurable in pounds per inch

P = gverage pressure or tension, measurable in
pounds j er square inch

a,l = horizontz! distances on axis of z

(Y = constants

Tencerios oF A CoMPLEX VARIABLE USeD As STRESS Funcrion

A stress function will be arplied of a type which was introduced
by Carothers? in 1920 and, evidently independently, by N4dai¢
in 1921. Both expressed tke significant values in terms of har-
monic functions, and both made use of the following fact: A
harmonic function of z and y can be obtained as the real part
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and the contact is complete. . At still greater loads the
stresses increase as if the two solids were one. The pro-
cedure by which this problem is solved is demonstrated
first by showing its easy application to some well-known
cases, especially Hertz’s problem of cireular cylinders in
contact,?

Further applications are to a noncircular cylinder rest-
ing on a solid with a flat top, with an initial separation of
the surfaces varying as the fourth power of the distance
from the initial line of contact; to partial contact of
two surfaces which are initially plane, except that one
of them has a ridge or several parallel ridges; and to
some related problems in which two_parts of the same
body are partially separated by the forming of one or
more cracks. .

ReZ or the imaginary part ImZ of an analytic function Z of
the complex variable z = z + iy, with Z being written in the
forms

Z = Z(z) = Z(z + iy) = ReZ + 4ImZ........[1}
In the present applications it is expedient, as done by Mac-
Gregor,* to use the function Z itself as stress function.
The further functions 2*, Z, and Z are the derivative and first
and second integrals of Z, so that

dZ dZz- _ dZ
Z'-Z. Z-Z. Zomg e .....12)

The properties of derivatives are noted

OReZ dImZ , olmZ dReZ y .
2w "oy "R o —— o = ImZlg

In 2 restricted but important group of cases the normal stresses
and the shearing stress in the directions of z and y can be stated
in the form

¢, = ReZ —yImZ'................[4]
o, = ReZ +yImZ'................|5]
Ty = —yReZ' it .16}

* Heinrich Hertz, Crelle's Journal far die reine und angewandte
Mathematik, vol. 92, 1881, p. 156 (aleo in his Gesammelte Werke,
vol. 1, 1895, p. 155). See, for example **Theory of Elasticity,” by
S. Timosbenko, McGraw-Hill Book Co., Inc., New York, N. Y., 1934,
pp. 339-350.

3 “‘Plane Strain: The Direct Determination of Stress,” by S. D.
Carothers, Procecdings of the Royal Society of London, series A, vol.
97, 1920, pp. 110-123, especially p. 119, -

¢« “Uber die Spannungsverteilung in einer durch eine Einzelkraft
belasteten rechteckigen Platte,” by A. Nfdai, Der Bauingenieur,
vol. 2, 1921, pp. 11-16, especially p. 12. N4dai applicd the function
to express curvatures and twists of elastic elabs. The curvatures and
twists can be interpreted as stresscs through Airy's strees function.

¥“The Potential Function Method for the Solution of Two-Di-
mensional Stress Problems,” by C. W. MacGregor, Trans. American
Mathematical Society, vol. 38, no. 1, July, 1935, pp. 177-186.
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By referring to Equatiors {3] it is observed that these stresse<
satisfy the two conditions of equilibrium of the form

o7, br,.

— o =m0t 7

-+ . (7
The limitation of this type of rolution appears in Equations
(4] to [0}, which require that

o, o, andr, =0aty=0............. 18]

With deformation in the direction perpendicular to the z, ¥
plane prevented, the displacements ¢ and g in the directions of z
and y are defined by the formulas

2Gt = (1 —2u) ReZ — yImZ............. 19}
26y = 2(1 — p) ImZ — yReZ............ (10}

For, it is found that these displacements define the stresses in
Equations [4] to [6] through Hooke's law, which can be stated

in the form
on ot - On
(e y)] e me(GeR)

g
N 18]

A useful obscrvation from Equation [10) is that the value of
naty =0is

"= ==
It is noted, furthermore, that the Airy function defining the
stresses by the equations

P O*F O'F .
o, = b_y;' o, = b_z;' and 1, =— b?y ..... 13}

is
F=ReZ+ylmZ................ (14}

In a slice parallel to the z, y-plane one unit thick the total vertical
force transmitted between two points is the increase of the deriva-
tive

f = ReZ + yImZ ............. .. 113)
oz .
between the points. Similarly, the total horizontal force trans-
mitted between two points is the increase of 3
OF /oy = yReZ........... e (16}

between the points. }
INTRODUCTORT APPLICATION TO BOUSSINESQ'S ProsLENM

The semi-infinite solid ¥ = 0, with y positive downward, is
under consideration. The function

Z = Plxz) e 117}

ReZ = P8 — («/2)} /7o, {19

According to Equations [13) and [19], in a slice parallel to the
zy-plane and one unit thick the total vertical foree transmitted
between 8 = rand 8 = 0 is —P. It is concluded that Fquation
[17] represents the solution of Boussinesq's problem in two di-
roensions for a normal pressure P cancentrated at z = 0. The
familiar formulas for stresses and displacements are obtained

that is
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readily by substituting from Equations [17] and [18] in Equa-
tions {4}, {5], 16], 19], and {10].

Rows or Fonrces
Equation [17] suggests consideration of two modified functiuns

Z; = —i%,cot(rz/l) and Z, = —:rs;n—(P:JT).lm]
Near z = 0 both approach Z in Equation {17).
tion shows that Z, represents a row of equal pressures P at z
=0, =] =2 . . ..,and Z; represents a row of es P at
2= 0, %2, =4l,....andarowof pulls Patz = =], %3], =3,
..on the solid y 2 0. When y becomes great, Z, converges
toward —P/I, making the stresses in Equations [4] to {6} con-
verge toward a uniform pressure P/l; while Z, converges toward
zero, making the stresses converge toward zero, as they should
under the seclf-balancing load.

DEMONSTRATION BY APPLICATION TO HERTZ'S PrOBLEM OF Two
Circtrar CYLINDERS 1N CoNTACT

The solid y = 0is considered again. Asstress function is chosen

z ,_.f_ [\/(.,:-,:) +u] .......... 21)

or Z -—f—g[\/(a’—x’+y’——i2xy) +iz—-y:|..[22}

At y = 0 the shearing stress r,, = 0, and the normal stresses,
according to Equations [4] and [5], are both equal to ReZ.
Accordingly

o, =0, =0aty =0,z<-—gorzr>a....... {231
o, = o, = —(2P/xa?) +/(a*— 2V
aty =0, —a<z<@a....e..... [24]

Equations [23] and [24] show that the diagram of pressures on
the surface y = 0 can be drawn as a half-ellipse between z =
—a and z = g; outside there is no load. The total pressure on
the slice one unit thick is P.

When z becomes numerically great, with y remaining positive,
one may write

Viat—z) = —iz /(1 — (@) = —iz(1—a¥/2r — ...)

-...125}

Therefore, Z in Equation [21] converges toward Z in Equation
[17], which represents Boussinesq's problem.

In the interval —a < z < @ at y = 0 Equations {12] and
[22] give

dne - 2(1 — u?) ImZ = — 41 — u?)Pz
dz E 3 xEa?

that is, along the axis of z there is produced a constant concave
curvature

1 )

11 — P

“Eat [27]

If iustead of being initially flat along the axis of z the sur-
face has an initial convex curvature equal to that in Equation
[27]). under the pressures defined by Equation {24] the surface
will be flattened out and become plane in the interval —a < z< a;
outside this interval it will be flattened out less.

1t follows that if two parallel cyvlinders with radii R are pressed

_together by the load P per unit of length. the width 2a of the

strip of contact will be defined by a in Equation [27], which agrees

Further insp-e- '
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with Hertz's elassical «olutie: . With a known, the contnet pres-
sures are defined by Equatic:. [21] and the stresses and displace-
tents an the surroundinz - zion by Equations |21], (4], |5),
16], {9, and {10].

Beanne Pressene Turoron Suiantny WaveDd SurFace
Fquation [21] suzzests investigation of the stress function

2p cos (r,’l)

Z== sin? (ra/l)

{\7isin? (xa/l) — sin? (x2/1)] + 1 sin (x2/1)}
..128]

#- applying to the solid ¥ 2 0. It is assumed that @ < 1/2. By

computing as in Equation {23], it is found that when y is positive
and great compared with ¢, Equation [28] may be replaced

by .

Z=—qdpcot (wz/).....covinienn, (29}

According to the comments on Equations {20}, Z in Equation
[29] represents a row of pre~sures pl with spacing l at y = 0,
and a uniform pressure p at zreat values of y.

At the surfare y = O cune Znds in the interval —a < z < a

2p ras(xz/l)

= 7 == e
Re. wir.*(xa/l)

\/[Sin’(wd/()
—sin*(=z/l)] . ...[30]

¢, = o,

and in the intervala < 2 < ] —a
g, =c,=ReZ=0............... [31]

The function Z is periodir, z=d the period is . The values are
repeated in the similar intervals. Thestripsnl —a < z < nl
-+ a are loaded by pressures — g, defined numerically by Equa-
tion |30}; the remaining sirip= are unloaded. )

Within the loaded strips of the surface Equation {28] gives

p sin(2=xz/l)

Z=—
Im sin*(xa/l)

Over the whole surtuce ImZ is antisvmmetrical with respect to
the eenter lines x = nl’2 6 1= strips. By referring to Equation
11271t is then found that witlin the loaded strips the deflection
of the =urface can be stated &=

200 —u?) - = i — Ol [eos(2az/l) — 1]

m=—fp  mZ= +E sin® (xa/l) ---138]

with the integration constant being the same for all the loaded
strips.

Assume now that instead ¢ being xmtmllv flat the surface is
slightly waved, having the ezxation

Yem |l — cos@rz/D] curnnann.... 134]
11— u)pl
with c = .._____‘:_)p_

TEmtGa/l e

Then under the pressures éefiz.ed by Equation [30) the ordinates
%o + mo of the deformed rurfoce will be zero within the loaded
strips,  The Jonded strips will He flattenedout and be contained in
a single plane. A {further exzmination of ImZ as defined by
Equation 128} shows that .; = no will be positive between the
loaded strips.

It is concluded thut if unotier solid of the same material and
shape ix placed in cantact wizh the one considered, so that, the
axis of z becomes an axis of symmetry, and if thereafter a uni-
form pressure p is produred =t numerically large values of .
the contact pressures will he as defined by Equation {30]; the
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aren of contact throush which the pressures are transmitted
will consict of the striz= of width 2a defined by Equation [35].
Equntionz [34} and |37, are verified by Equation (27] when @
is emall compared wits L

1t is noted that the :zitial separation of the two surfaces, be-
fore preseure is applied, is

s = (c/2)|} —cos 2xz/l)}m ¢ sinxz/l), Smax = c...[30]

The conclusions that were drawn continue to apply if the two
nearly flat surfuces in contact have a different shape, as long as
the initial separation is defined by Equations (36].

Fig. 1 fllustrates this case. Fig. 2 shows some results obtained
from Equations [30) ar.d {35].

NoNcirRctLaR CrrxpEr Wite NEaruy Frat Borrou
The function )

Z =— Ll iz + a¥/2)V/(a* — 29 + iz]..... [37)
3xat

applied to the solid ¥ 2 0, is examined first for numerically
great values of z. By writing
) ....138]

2 4
Vit — ) = —iz (1 :i;—é‘—-..
Z in Equation [37] is ound to converge toward Z in Equation
{17], which represents Boussinesq's problem. Again, at dis-
tances great comparec with a the stresses are as in Boussinesq’s
problem, and the totzl load on the slice one unit wide is P.
Aty = O only theirzerval —a < z < aisloaded; the pressures
are —ReZ. At r = O the pressure is 8/3= times the average,
that is, less than the average; the maximum pressure occurs
at some distance fro the center of the load. These pressures
can be produced by contact of two solids. The required initial
separation s is computed by considering the interval —a < z
< @. One finds
G = ImZ = 8(1 — u?)P z
E 3zEa*
The lower solid may have a flat top while the upper solid is &
noneircular cylinder st.aped at the bottom according to a parabola
of fourth degree. '

8 =

Frat SurFaceEs With ONE or MoORE RipGEs

Fig. 3{a) shows two solids with surfaces that are initially plane
except for a single ricze on one of the sugfaces at z = 0. Under
the pressure p contac: is missing in the intervals —a < z < 0
and 0 < z < a. The same situation may be created by driving
a plug in between the two surfaces. The stress function

Z = —p V(1 —a2).eniannannn.. {40]

represents this case, with the provision that a uniform horizontal
tension, for example. ¢, = p may be superposed. Fig. 3(b)
shows the distributios of the pressures of contact. The force P
at the ridge is found by stating Z near z = 0 for y > 0 in the
two forms .

Z = —ipajz = P/ixg).eeennnnnnn.n. {41)
which gives
The value of a will ¢zpend not only on p but also on the height
and sharpness of the ridge.

Tig. 3(c) shows the related problem of a number of equal paral-
lel ridges with spacic.z . The corresponding stress function is

e Z —7 ‘l[l Sil]’(fﬂ/l)]

 ein¥(xz/l)
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F10. 4 INTERNAL CRACK

INTERNAL CRACK

Fig. 4 shows an internal crack which has opened from z =
—ato z = a under the influence of an average tension p. Tie
function ;

Z=p/vV/Il— (@)oo i21)

solves the problem. Z converges toward p when z becorm.:s

numerically great. At y = 0 one finds outside the crack tl.e
tension

o, =p/vVI1l—(@/zN].coeeeen 35)
and within the length of the crack the opening
41 — 2 — 4(1 — u?
200 = =) pmz = IRy — s
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which sheows the Lapee of the ~raek to be elliptie. The eoneentra-
fioneof stie-< and the jnfinite <lope dny/dr at 7 = =a are subject
to the uoual interpretation soplieable to singularities. A uni-
form horzontal enicpressive co1ees p may be superposed without
distirriung the re g feat ares of the solution.

Equation [44] sugpets exzonination of the function

e sin¥(xa/l)
Z- p/‘vi_l _sin’(rz/l)]

At numerieally great values ¢f y this function converges toward p
and defines a uniform tension p. At y = 0 the function sccounts
for u system of cracks, each of length 2a, with centers at z =
0, =, =21, ... .

The function
Z, =

with Z as in Equstion {447 ¢ [47], acccunts for a crack or a
systern of cracks at y = 0, crea‘ed by a liquid pressure p in the
cracks as the only losd.

Crack OrzNED BY WEDGE

Fig. 5(a) shows a crack oper =d by a wedge exerting pressures P.
The stress functions

P la

la Y A
Z, = 1(0—7"2) ‘z and 2Z, ’(a +2)“6”[49“50]

represent two possible sclutizzs, which require different loads
at the outer boundary. Fig. 3(b) and (c), show the correspond-
ing dingrams of stresses at y = 0. A change of the load on the
outer boundary may bring about the change from Z, to Z, re-
placing the concentration of tznsion in Fig. 5(b) by the diagram
of finite compressive stresses in Fig. 5(c). The form of the
latter diagram near z = 0, with the vertical tangent at z = 0,
should be considered as charo~teristic of brittle materials, such
as conerete.t

¢ “Noresses at a Crack, Size ¢

7 the Crack, and the Bending of Re-
inforced Conerete,” by H. M. -steriaard, Journal American Con-
crete Irsi., Novewmter-Decem 1833, or. Proceedings, vol. 30,
1934, pp. 93-102. Contains ar. zzalysis of this feature of cracks.
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F16.5 Crack OPENED BY WEDGE

(c) lP

An internal crack which has been opened between z = —a
and z = g by 8 wedge exerting the pressure P at z = 0 is ac-
counted for by the stress function

Z = Paf[xz/(z23 —a¥)]).......... ....[51]

This function shows concentration of tension at z = =g, and
vanishing stresses at great distances from the crack. If an ex-
ternal pressure is superposed, of the magnitude p defined by
Equation [42], Z in Equation [51] will be replaced by Z in Equa-
tion [40], and the concentration of tension is replaced by moder-
ate compressive stresses,

Coxcrromvg Comuent

It is easy to add further examples. Those that bave been shown
indicate a type of problem to which the method that was used
lends itself.



